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Abstract: Modelling and predicting groundwater quality from sparse data sets is increasingly being recognised as a critical
and challenging issue. Data on groundwater guality vary simultaneously in time and space, reflecting complex chemical and
physical/geological conditions. This paper deals with the spatiotemporal {s/t) stochastic estimation of water gquality parameters
when complex joint space-time trends are present. Teo account for the s/t nature of water comtaminants, the estimation
framework of universal kriging (UK) is used in a generalised s/t form. Several practical forms of s/t trends are examined
including polynomials, Fourer functions and their combinations. Nitrate ion concentrations from natural springs are used to
show the inference of s/t trends typical of water quality data and demonstrate the application of the s/t UK estimation process.

i. INTRODUCTION

The deterioration of groundwater quality is a critical
worldwide issue whose recognition has prompted both
interest and action to monitor water guality. Monitoring
atternpts to detect and predict contaminant levels, which
may assist with the early detection of contaminant release
from resowrce extraction and utilisation. Groundwater
quality may be monitored from the analyses of water
samples for dissolved ions. The results are subsequently
used to model and predict contaminant levels and refated
variations. Groundwater chemical composition varies
simultaneously in time and space due to complex
interactions of aguifer characteristics, climatic fluctuations
and human activities. The complexity of these interactions
is expressed in data sets with distinct space-time trends
that provide a challenge to modelling and prediction
techniques.

Various space-time estimation techniques have been
proposed, particularly in hydrology, atmospheric and
environmental science. Earlier approaches include the use
of time-averaged spatial covariances {Bilomick, 1983;
Egbert & Lettenmaier, 1986], s/t scparable covariance
models [Rodriguez-Tturbe &Metia, 1974; Rodriguez-Thabe
& Eagleson, 1987], or zonal anisotropy covariance models
[Bilonick, 1985, Buxton & Pate, 1994]. Other approaches
consider that a spatiotemporal process is a multivariate
field constructed from spatial variables or temporal
variables, space-time estimation is then based on co-
kriging {Rouhani & Wackernagel, 1990; Goovaerts ef al.,
1993; Goovacrts & Sonnet, 19931

Modelling techniques accounting for compiex space-time
trends are somewhat limited in the literature. They include
“moving space” models [Bras & Rodriguez-Tturbe, 1976],
irend polynomial surface analysts [Berkowitz ef af, 1592),
geostatistical models using generalised covariances with
additive spatial and temporal componenis [Rouhami &
Hall, 1989] and space-time separable polynomial
generatised covariances [Christakos & Bogaert, 19961

In this study. the step-by-step joint space-time modelling
and prediction of springwater ion concentrations measured
in springs over several years, is presented in the context of
water quality monitoring. The modelling framework is
first overviewed bascd on spatictemporal random ficlds
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and the decomposition of a random field in a trend plus a
random component [Dimitrakopoulos & Luo, 1997]. The
trend models used are combinations of both polynomials
and Fourier functions of various orders. The practical
criteria for the fit of complex spatiotemporal trends are
presented as part of the application. Next, the inference of
spatiotemporal continuity measures [Dimitrakopoulos &
Luo, 1994} for the contaminant residuals is demonstrated.
Finally, the spatiotemporal inference of NO3™ ion
concentrations a2t unsampled locations in space-time is
presented and the resuits discussed.

2. SPATIOTEMPORAL STOCHASTIC MODELS
2.1 Basic Pefinitions

The basic definitions of non-stationary spatiotemporal
random fields are summarised in this section, as required
for the present study. A space-time non-stationary random
function, S/TRF, Z(st), where s € RM and t €T. Z{s,1) is
decomposed to Z{s1)=Y{s1)+m(s,t), where Y{s1) is a
stationary and ergodic random function with zero mean,
covariance C(h,t) and varipgram y(h,t) with k=s-§', and t
=t-1'. m{s,t) is a joint space-time trend represented by
L T
ms,t} xjg*l aj fls, =1 "o €))]

where ‘sz ifi (a0, ..., fL(s1)] is a vector of known
functions, and o = [«1,...,aL] are unknown coefficients.

2.2 Spatictemporal Estimation

Spatistemporal estimation based on the above definitions,
is formulated as follows. For a set of N data {z(si,1;}, i=l,
..., N}, a kriging estimator at unknown location (sp,tg) 1S

N
*(sp,tp) = 5:=1 g 7(81.4) (2

where the weights A are derived from the traditional
uriversal kriging system (UK) system extended into space-
time,

CA - }T}J. = Co

Fla=t, 3)

with veclors KT=[).;, g pT ={p1, LKL COT
=[Clhgy,To1), - Clhyy T fo- = [F(Goto) -



i (8o,ip)], matnix C= [Cj]= EC(hij, i}l and the NxL
matrix F = [Fij] = [fi(s1,41)]. The minimised UK estimation
variance is

2
Ty so- o) = - COT W+ ol p+ CligoToo) (4

2.3 Forms of Complex Spatictempora! Treands

The s/t UK system in (3) requires that the s/t trend models
meet several requirements discussed explicitly by
Dimitrakopoutos & Luo [1997]. The same zuthors suggest
three general types of s/t trend forms, polynomial, Fourer
and mixed, summarised below for the common Rland T
case.

The polynomial form of a s/t rend, following the notation
in(l)is

1 =11, 5%, Sy. €, oy 555, 575, 16] (5)
where £ and C are orders in space and tims, respectively.

The general Fourier form is
fT =1, sinmxsxnsina}ysy-sinmtt, SINESx-$inoySy
COSE, .., COSG1SxeCOSyIS-sinmL, COSO IS5y
cosmyi5y~cosmtit] (6)
where @y, oy and of are frequencies in directions sx. Sy,
and t, respectively; i denotes the order of the Fourier
series.

The mixed form includes combinations of the above. The
mixed forms can be generated from m{s=m(shm(t),
where m(s) is the spatial trend and m(t) a temporal trend.
An example is
fj = [1,5%.5y, sinw;t, cosmyl, sxsinmd, SxCoswd,
Sysinemyt, SyCosod, 2 @)

2.4 Practical Spatiotemporal Trend Models

The spatiotemporal trend forms given in the previous
section can adequately model complex joint s/t trends in
most practical cases, using low orders.

When polynomial trends are considered, the space and
time orders & and ¢ up to 2, generate four combinations,
sufficient to cover most practical cases. A s/t Fourier trend
form of order i set to 1 penerates eight ierms which are
also quite sufficient. A larger order either in time or space
may generate an unnecessarily large number of terms
without any practical significance. The orders that seem
appropriate to the data set to be modelled ars selected
practice.

Mixed forms are the most flexible. For instance, 2 mixed
form consisting of polvnomials of order up to 2 and
Fourier series of order 1 generate several useful
combinations:

a)for &=1, i=1:
= (1, 8x 5y, sint, coSt, Sx5ing, 5yXCOSt, Sysint, sycosi)

b) for £=2,1=1
£ =(1, sy, Sy, sxz, 5xSy, syz, sinwml, COSME, SySNmg,
$xCOSm, SySMetL, Sycosort, szsino}g[, sxzcosmtt,
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sxSysinat, sxSycosmtl, sxsyzsinmgt, sxsyzcosmti}

¢) for_i=1, C=1:
£ = (1, sinw, 5y, COSWSyx, sinmysy‘ CoSOySy, 1,
1sinwysy, (COS@ySy, 1SiNMySy, LCoSYSy)

d) for_i=1, {=1:
f° = (1, sineysy, COSOSY, sincoysy, COS0YSy, 1, tz,
5inWy Sy, 1COSGy Sy, tsinmy5y, oSty Sy, § Siﬂﬂ)xSy,
t7COsmy Sy, tzsinmySy, tzcoscnysy}

Given their possible forms, space-time trend models can
be fitted using trend suwrface analysis (Ripley, 1981
Apterberg, 1974) extended in space-time. This is the
approach followed in the present study.

5. SPATIOTEMPORAL ANALYSIS OF NITRATE
ION CONCENTRATIONS IN SPRING WATER

5.1 Study Area and Data Statistics

High nitrate ion concentrations usually reflect human
activities, which include the use of fertilisers and waste
from sewage systems. Variation in intemsity of human
activities combined with climatic and geohydrological
result in space-time variations of nitrate concentrations in
groundwater which may be sampled at patural spring
locations. The applied aspects of modelling and prediction
of nitrate levels in unsampied locations in space and
instances in time is shown in this section, based on the
developments outlined in section 2.

In the present study, the springwater nitrate (NO37) ion
copcentrations, in milligrams per litre (mg/l) from 68
springs are analysed (Figure 1). The data accuracy is
estimafed at 5 mg/t. In total, 408 data were collected over
six vears (1975 to 1983). The statistics of the data are
shown in Figure 2.
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Figure: Spring locations

The frend analysis of the data set is presented in the next
section.
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Figure 2. Data siatistics

3.2 Trend [nference

Trend surface analysis is used in this section in space-time
t0 identify the prescnce of trends and it appropriate
models to the NO3™ ion coancentration data set. To
accommodate a focal trend fitting, the study area is used to
infer the appropriate form and order of the trend. The
trend coefficients arc inferred locally, 1o refiect local sit
conditions. Four spatially defined sub- areas are used to
infer local trend coefficients. These correspond to the four
quarters evenly dividing the study area. The subdivision
was based on visual inspection of the data and is further
verified by the presence of trends, well fitting trend models
and the generation of acceptable residuals, as required by
the decomposition in section 2.1.

A total of 16 trend models based on {5), (6). (7) are
included in the trend surface analysis. The trend models
used here are specified by the order of spatial component
denoted with £, the order C of the temporal component and
the order i of the Fourier terms. The notion §=5+1

Table 1: Trend models and results of irend surface
analysis. The spatial and temporal periods are 2.0 and 3.0
respectively.

Trend Mean dMean Mean Good

model absolute | square erTer ness of

(s/1) erToT erToT fit
Eu)f L B.436 127.39 1 00000035 1 0231
£l L= ) %293 12427 1 - 00000559 £516
=i i=0 7501 10771 1. 00000006 | 1687
=i i=1 7789 0501 P 00000096 1899
N TR 7060 10589 1 00000593 2184
Fm =0 A #3300 | (0003093 3304
7122 80579 | - OGH0G799 3535

5916 76875 | 00002518 387

8157 125,14 | - 00000081 | 0439

7351 97714 1 00000145 2531

8240 1570 1 00060019 37

5,542 48 530 | - 00000001 | 5742

% 470 L2825 1 00000005 (128
7504 94,344 | GOG000OS 257

£l Tl 7.504 94,344 | 000000605 2578
A R 4978 41,534 | - 00001967 | 6265
Eely/ =1 7.824 108,72 00000032 | 1809
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indicates 2 mixed polynomial-Fourier space component
with polynomial order £ and Fourier order 1. The period of
the Fourier terms is derived from the continuity measures
{omnidirectional experimental s/t variograms) and tested,

Table 1 summarises the 16 trend models used in the study
and the results of trend surface analysis. The table includes
the four goodness of fif criteria used to select the best s/
trend model. The periods for the Fourier terms are 2 in
space and 3 in time and werg retained due to the better fit
of the trend models. Mote that sensitivity to the periods of
space and time trends was carvied out. The best fitting
irend model, bolded in Table 1, is linear plus harmonic in
space {E=1+1} and linear in fime ((=1). Table 2 shows the
trend coefficients for cach of the sub areas used.

Table 2: Coeflicients of trend model fitted to the nitrate iton
concentration data. The spatial pericd 1s 2.0.

s/t termis Trend Coefficients

Bubarez | | Subarea 2 Subarea 3 | Subarea 4
i 31616709 | 1388233 1737017 | 91.21171
sinxsiny 14.66309 6.53164 594253 1.73782
sinxeosy | -11.2419% | 1139687 | -13.22187 | -2.95470
cosxsiny 28 45549 2.38497 -9.09622 161511
COSKCOSY 3.58883 1.56553 14 53264 -2.84192
X 3.17122 -9.23165 4.83633 -11.83963
y -5.72212 | -11.34528 1.84959 4.91687
t - 37057 -16.95049 ~-2.159038 -2.30121
{sinxsiny -27221 - IR0 - 10192 6021
tsinxcosy -.00368 16165 12208 {01690
teosxsiny -.(36222 - 12204 - 10081 00007
tcosxcosy 45124 16563 -.25864 08260
xt -.02094 749113 19562 15677
vt 07927 13082 -07948 - 06043

5.3 Spatiotemporal Continuity of Residual Nitrate fon
Concentration

Foltowing the UK decompeosition in section 2.1, residuals
of the data arc generated based on the inferred s/t trends.
In addition to the fit criteria of the trend models in the
previous section, two requirements for accepting trend
model are considered here. First, the resideals are
normally distributed and, sccondly, the spatictemporal
variggrams or covariances of the tesiduals are isotropic.
Both these requirements are met here, as shown in a later
paragraph.

Figure 3 shows the histogram and statistics of the nitrate
ion concentration residuals. The experimental directional
s/l variograms are shown in Figure 4a to 45 and are clearly
isptropic with a space range at about %00m and time range
at possibly 6 years. Note that the calculation of the
spatictcmporal  experimental variograms is based om
separate 2D space and time lags.

The medel fitted to qeantify the joint space-time continuity
of the nitrate residuals is isotropic, exponential and given
by:
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Figure 3: Statistics of nitrate residuals.

i, ) = 2,98 + 415 (1 - expl (GG +55 )" 1

Note that issues relevant to definitions and permissibility
criteria for variograms and covariance functions of
stationary and ergodic spatiotemporal random fields are
presented elsewhere [Dimitrakopoulos ard Luo, 1994].

(d)

(e}

Figure 4: Spatiotemporal experimental variograms of
nitrate ion concentration residuals. The spatial directions
are {a) E-W, (b) NE, (¢) N-§, (d) NW; (¢) fitted variogram
model.

6. ESTIMATION OF SPRINGWATER CONTENTS

Following the trend analysis and model fitting, the space-
time UK system in (3) is used to interpolate at unsampled
locations in space and instances in time. The estimation
uses a grid size of 300 meters by 4 months It is
conjectured that the use of local trend coefficients wili
enhance the local prediction in the produced maps.

Figure 5 shows the spatiotemporal mapping of the nitrate
in concentrations for 1979, 1980 and 1981. High NOy
concentrations are observed at the centre, southern central
part and to a lesser extent the eastern part, The high-value
zone in the central area expand with time while there are
no distingl changes for other high-value zomes. Further
linking of the produce maps with information on human
activated and hydrologic conditions in the study area could
provide valuable interpretations.

7. CONCLUSIONS

A spatictemporal modelling of water quality data for
predictive and monitoring reasons is a critical and
technically challenging issue. Since water guality data
have a distinct spatiotemporal nature, it is necessary to
develop and use appropriate modelling techmgques. This
study presenis a technique which captures and quantifies
joint spatiotemporal characteristics, including local trends
and spatiotemporal continuity.
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Figure 5 Spatiotemporal predictions of NOy ion
concentrations {in mg/i) for 1979, 1980 and 1981

This study demonsirates that spaliotemporal universal
kriging is a suitable stochastic medelling framework for
modelling spatiotemporal groundwater data such as nitrate
ion concentrations. Major advaniage of the UK framework
is its flexibility in describing spatictemporal trends by
capturing global charucieristics as well as local details. In
addition, the use of cotaplex joint space-time trend models
combining polynomial with harmonic terms adds the
flexibility needed to adeguately model data periodicities.
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